منابع مشابه
On generalisations of almost prime and weakly prime ideals
Let $R$ be a commutative ring with identity. A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$, $a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$, for some $iin{1,ldots,n}$; ($m,ngeq 2$). In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...
متن کاملon generalisations of almost prime and weakly prime ideals
let $r$ be a commutative ring with identity. a proper ideal $p$ of $r$ is a $(n-1,n)$-$phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin r$, $a_1cdots a_nin pbackslash p^m$ ($a_1cdots a_nin pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin p$, for some $iin{1,ldots,n}$; ($m,ngeq 2$). in this paper several results concerning $(n-1,n)$-$phi_m$-prime and $(n-1,n)$-...
متن کاملDirichlet Prime Number Theorem
In number theory, the prime number theory describes the asymptotic distribution of prime numbers. We all know that there are infinitely many primes,but how are they distributed? Dirichlet’s theorem states that for any two positive coprime integers a and d, there are infinitely many primes which are congruent to a modulo d. A stronger form of Dirichlet’s theorem states that the sum of the recipr...
متن کاملThe Prime Number Theorem
The Prime Number Theorem asserts that the number of primes less than or equal to x is approximately equal to x log x for large values of x (here and for the rest of these notes, log denotes the natural logarithm). This quantitative statement about the distribution of primes which was conjectured by several mathematicians (including Gauss) early in the nineteenth century, and was finally proved ...
متن کاملLittle Grothendieck’s theorem for real JB*-triples
We prove that given a real JB*-triple E, and a real Hilbert space H , then the set of those bounded linear operators T from E toH , such that there exists a norm one functionalφ ∈ E∗ and corresponding pre-Hilbertian semi-norm ‖.‖φ on E such that ‖T (x)‖ ≤ 4 √ 2‖T‖ ‖x‖φ for all x ∈ E, is norm dense in the set of all bounded linear operators from E toH . As a tool for the above result, we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2016
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2016.05.006